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Abstract 

In this article we propose a new and so-called holomorphic deformation scheme for locally con- 
vex algebras and Hopf algebras. Essentially we regard converging power series expansions of a 
deformed product on a locally convex algebra, thus giving the means to actually insert complex 
values for the deformation parameter. Moreover we establish a topological duality theory for lo- 
cally convex Hopf algebras. Examples coming from the theory of quantum groups are reconsidered 
within our holomorphic deformation scheme and topological duality theory. It is shown that all the 
standard quantum groups comprise holomorphic deformations. Furthermore we show that quantiz- 
ing the function algebra of a (Poisson) Lie group and quantizing its universal enveloping algebra 
are topologically dual procedures indeed. Thus holomorphic deformation theory seems to be the 
appropriate language in which to describe quantum groups as deformed Lie groups or Lie algebras. 
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0. Introduction 

In this paper we propose a new deformation scheme which we call holomorphic and 
which seems to recapture what is actually done in the context of describing quantum groups 
as deformed Lie algebras. Although it appears to be new as an explicitly formulated concept, 
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we are convinced that our holomorphic deformation theory is in fact very close to many 
aspects of existing deformation procedures in mathematical physics. 

The reason to consider holomorphic deformations instead of the by now classical formal 
deformations of Gerstenhaber (cf. [5,6]) is twofold. First, one likes to obtain concrete 
deformations, i.e. deformations of the structure on a given vector space which are defined 
on this vector space and not only on a suitable extension. Secondly, it is a well-known fact 
within the theory of infinite-dimensional Hopf algebras that one is often forced to change the 
usual tensor product and/or the concept of the dual space. This change is well understood 
by introducing a (locally convex) topology on the Hopf algebra in question as has been 
shown in [ 11. There nuclear Hopf algebras H are studied, and a deformation of H is defined 
as a certain Hopf algebra structure on HT := @[[T]]g3H, where 6 denotes the completed 
n-tensor product of locally convex spaces. The change of definition we propose is simply to 
replace C[[T]] by the locally convex algebra 0(Q) of holomorphic functions on a domain 
52 C @: A holomorphic deformation of H thus is a certain Hopf algebra structure on 
HQ := O(f2)@H. The advantage of this approach lies, among other things, in the fact that 
it is possible to actually insert values z E Q into the holomorphic deformation in order to get 
a deformed Hopf algebra structure on H (and not merely on HT resp. HD). Furthermore, the 
structure maps of our concrete deformations of H are evaluations of mappings depending 
holomorphically on Z. 

Of course, in order to show that this variation of a deformation concept is reasonable and 
useful, one has to give interesting examples. In the present paper we will show that a large 
part of the actually studied deformations of Hopf algebras, in particular those arising in the 
context of quantum groups, can in fact be interpreted as being holomorphic deformations. 

Our work is motivated by the desire to understand physicists work on deformation quanti- 
zation and inverse scattering, where algebras are “concretely deformed” by a real parameter 
fi or q and not only by a formal one. 

1. Topological and algebraic structures 

Let us denote by K one of the fields R or C together with the Euclidean topology. In order 
to formulate our concept of holomorphic deformation we need some preliminaries from the 
theory of locally convex and nuclear H-vector spaces (cf. [ 10,ll J for details). It is always 
assumed that such a locally convex (or briefly lc) topology is Hausdorlf and complete. 

Now, if E and F are two lc spaces, we denote the completion of the tensor product E @I F 

endowed with the n-topology by E&F. An lc space E is called nuclear if all topologies on 
E @ F compatible with @ agree for all lc spaces F (cf. [7]). In case E and F are nuclear, 
the completion E@IF of E @ F for two nuclear spaces E and F is again a nuclear space. 
We call a nuclear space E strictly nuclear if its (strong) dual E’ is nuclear as well, if E 

is reflexive (i.e. the strong dual of E’ is isomorphic to E as an lc space) and if it fulfills 
the duality condition, i.e. the canonical linear mapping E’ @ E’ + (E&E)’ extends to 
an algebraic and topological isomorphism E’kE’ -+ (E&E)‘. Nuclear Frechet spaces or 
duals of nuclear Frechet spaces are strictly nuclear as well as nuclear LF-spaces. 
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Algebraic structures can now be formulated within the symmetric monoidal category of 
lc vector spaces with &J as tensor product. 

Definition 1.1. An Zc algebra is an lc space A together with continuous linear mappings 
CL : A&A --+ A and q : 06 -_, A such that p fulfills the associativity constraint, and q gives 
rise to a unit. A homomorphism between lc algebras A and A is just a continuous linear map 
f : A + A such that b o (f&f) = f o I_L and jj o f = 17. A locally m-convex algebra is an lc 
algebra A for which there exists a defining family of multiplicative seminorms (cf. [9]). A 
nuclear algebra (resp. a strictly nuclear algebra) is an lc algebra for which the underlying 
lc space A is a nuclear space (resp. a strictly nuclear space). 

Similarly one defines the concepts of lc coalgebra (resp. lc bialgebra and lc Hopf alge- 
bra): These are lc spaces together with continuous structure maps fulfilling the appropriate 
structure axioms with 6 as tensor product functor. Moreover, by a morphism of lc coal- 
gebras (resp. lc bialgebras and lc Hopf algebras), we understand a continuous linear map 
leaving the structure maps invariant. After these definitions it is obvious what is meant by 
a (strictly) nuclear coalgebra and so on. 

Remark 1.2. An lc space A comprises an lc algebra if and only if it has an underlying 
structure of a K-algebra such that the multiplication CL : A x A -+ A is continuous. An 
analogous result does not hold for coalgebras. Namely there exist lc coalgebras C which 
do not have an underlying structure of a coalgebra. In other words this means that the map 
A : C + C&Z need not have its image in C 18 C. An example is given by the quantized 
GI(N + 1, C) of Section 3. 

Definition 1.3. Let H be an lc Hopf algebra or bialgebra. It is called topologically quasitri- 
angzdar if there exists an invertible element R E H&J H such that the following conditions 
hold: 

r o A(a) = RA(a)R-‘, (1) 

(A @ W(R) = R13R23, (id@ A)(R) = Rl3Rl2, (2) 

where t : H&H + H&H is the flip-morphism, and 7212, ‘7213, and R23 are the obvious 
extensions of ‘R to H&I H&H which are trivial on the third, second and first factor, re- 
spectively. In this case R is called the topological universd R-matrix of H. If additionally 
R-‘=soR,thenH’ 1s called topologicaEZy trianguhr. Dually H is called topologically 
coquasitriangulur if there exists a continuous bilinear map ( 1 ) : H&I H + C, the braiding 
form, such that for all a, b, c E H 

c (al Ibt )wbz = c albl (azlbd, (3) 
@J).(h) (a),(b) 

(albc) = ~(~~IW~zlc), Wlc) = ~(alc,)iblcz). (4) 
(a) (C) 

One of the main reasons to consider strictly nuclear Hopf algebras instead of just Hopf 
algebras lies in the fact that the category of strictly nuclear Hopf algebras has duals. 



34 M.J. Pjiaum, M. Schottenloher/Journal of Geometry and Physics 28 (1998) 31-44 

Proposition 1.4. Let H be a strictly nuclear Hopf algebra. Then H’ carries in a natural 
way the structure of a nuclear Hopf algebra. Moreover H can be recovered as H”. If H is 
topologically quasitriangular (resp. coquasitriangular) then H’ is topologically coquasi- 
triangular (resp. quasitriangular). The same holds for rej?exive lc Hopf algebras fuljilling 
the duality condition. 

Proof For the first part of the proposition just apply the isomorphism (H 6 H)’ 2 H/&H’ 
to obtain the coproduct A’ on H’ as the pull-back p* : H’ --+ (H&H)‘, f I-+ f o p. The 
other structure maps of H’ are directly defined by transposition. For the proof of the second 
part note that an element R E H&H induces a continuous bilinear form ( ( )R : H’& H’ + 
C by f @g w f @g(R). Then, by the isomorphism (H&H)’ 2’ HI&H’ every continous 
bilinear form ( 1 ) : H @I H + @ can be interpreted as an element R( ) ) E H’&H’. The 
proof of the required algebraic properties for the thus defined braiding form ( I )R resp. 
R-matrix R( I ) follows exactly like in the well-known finite-dimensional case. 0 

2. Natural locally convex and nuclear Hopf algebras 

In this section we will consider some topological constructions and examples of lc Hopf 
algebras. 

2.1. Inductive limit topologies on Hopf algebras 

On a given Hopf algebra H over H we can always consider the finest lc topology. Then 
H is a complete lc Hopf algebra, since all structure maps are automatically continuous for 
the finest locally convex topology. The locally convex Hopf algebra H is locally m-convex 
only if H is finite-dimensional and nuclear only if H is of countable dimension. The dual 
H’ with the strong topology carries the coarsest lc topology. Since H 2’ H(“) satisfies the 
duality condition, the dual H’ is a lc Hopf algebra as well according to Proposition 1.4. For 
the special case of a group algebra H = KG this dual is the Hopf algebra H’ 2 KG of all 
functions on the group G. 

2.2. Projective limit topologies on Hopf algebras 

Alternatively one can provide a given Hopf algebra H over K with the lc projective limit 
topology of finite-dimensional representations, i.e. with the coarsest lc topology leaving 
continuous all finite-dimensional representations p : H -+ End V. Let us assume that these 
representations separate the points of H. According to the later proved Proposition 2.1 
this is the case for example for finitely generated Hopf algebras H. It also holds for the 
universal enveloping algebra H = Ug of a finite-dimensional Lie algebra g. Then H is a 
nuclear Hausdortf locally convex space which is complete only if H is finite-dimensional. 
All structure maps of the Hopf algebra H are continuous since the topology is adapted 
to the finite-dimensional representations. Therefore, they can be uniquely extended to the 
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completion g of H and thus turn fi into a nuclear Hopf algebra. In addition fi is locally 
m-convex. The dual Z?’ of Z? (or of H) is the space of matrix coefficients on H, i.e. 
gil = {t o @14p : H + End V finite-dimensional representation, c E (End V)‘]. Hence, fi’ 
coincides with the restricted dual H” of H (see [2, Chapter 4.1 .D]). The strong topology on 
Z? is given by the locally convex inductive limit topology of the maps q’ : (End V)’ -+ k?‘, 
,$ H 6 o @, where cp runs through all finite-dimensional representations of H. Thus the 
strong topology on fi’ is the finest lc topology. Although the lc space Z?’ = H” is in 
general not nuclear, it satisfies the duality condition. Therefore, as in Proposition 1.4 the 
transpositions of the structure maps of the lc Hopf algebra Z? define the structure of an lc 
Hopf algebra on 2’. Dualizing again one gets the Hausdorff completion H”’ of H. The 
lc space fi’ will be strictly nuclear, whenever countably many of the finite-dimensional 
representations generate the topology of H, i.e. if 6 is Frechet. 

In the same spirit one can consider other projective systems of representations of H 
in order to define appropriate locally convex topologies on H. For example H can be 
endowed with the projective limit topology of all homomorphisms H -+ A, where A is a 
nuclear locally m-convex Frechet algebra. We call the resulting projective limit topology 
the topology of nuclear Frechet representations. The completion fi of H with respect to 
this topology again is a nuclear Hopf algebra. Furthermore, one has a natural continuous 
inclusion ri -9 ti. 

Proposition 2.1. Let A be a finitely generated algebra and TV 1: A a presentation of 
A, where TV is the tensor algebra of a finite-dimensional K-vector space V. Denote by 
?V and A (resp. ?!‘V and A) the completions of TV and A with respect to the topology of 
finite-dimensional (resp. nuclear Frechet) representations. Then the algebras TV, A, TV ” ” ” 
and A are locally m-convex nuclear Hausdor$ spaces. The spaces TV and A are even 
Frechet. Furthermore, the presentation TV -2, A extends uniquely to surjective and open 

maps TV 5 A and ?V 5 A, i.e. to topological presentations of A and A. 

Proof By the universal property of the complete hull we have unique morphisms ?‘V -% 

A and ?V 4 A both extending TV 5 A. We will show that they have the claimed 
properties. First consider the topology of finite-dimensional representations. Let us show 
that this topology is Hausdorff or in other words that the finite-dimensional representations 
of A separate the points of A. Consider the ideals In = $k,n VBk in TV. Their images 
in A define ideals .Z,, in A. Now for two elements a, b E A, a # b, there exists an n E N 
large enough such that a - b does not vanish in A/J,, . But A/J,, is finite-dimensional 
and an A-module. Thus the points a and b are separated by the representation of A on 
A/J,,. The continuous homomorphism TV -+ A is an open map. To see this choose an * 
open set U c TV. We can assume that there exists a finite-dimensional representation 
cp:TV+EndWandanopenO CEndWsuchthatU =cp-‘(O).Letfbethekernelof 
J?, and @ be the algebra im bp/q (i) . Then p induces a representation (p : A -+ I@ c End I$‘. 
As projections between finite-dimensional spaces are open there exists an open 6 c End 6’ 
such that 6 II im@ = 0 + q(i). We then have S(U) = Cp-l(6), i.e. S(U) is open in A. 
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As ?V --+ i is continuous, open and has dense image, it is surjective, hence, provides a 
continuous presentation of A. 

The proof for the case of nuclear Frechet representations goes along similar lines. 0 

2.3. Matrix coeficients of group representations 

For a group G consider the Hopf algebra of complex-valued matrix coefficients 7&(G) := 
{4 o CJJ 1~ : G + GLV finite-dimensional complex representation, .$ E (End V)‘} in the light 
of the preceding two examples. The space Q(G) with the finest lc topology is an lc 
Hopf algebra fulfilling the duality condition. This topology can also be described as the 
lc inductive limit of the maps PO’ : (End V)’ -+ 7&(G) where q runs through all finite- 
dimensional representations of G. The dual R(G)’ of %&J(G) endowed with the strong 
topology is an lc projective limit of finite-dimensional algebras and thus is a nuclear Hopf 
algebra which is locally m-convex. By the duality condition for Ro(G) the dual G(G)’ 
obtains as in Proposition 1.4 the structure of a nuclear Hopf algebra. 

In case of a topological group G we replace 7&(G) by the continuous matrix coefficients 
R(G) c 7&(G) . R(G) with the finest lc topology is an lc Hopf algebra as well and the dual 
R(G)’ is a nuclear locally m-convex algebra. In general, R(G) is not nuclear. For compact 
groups, however, R(G) is strictly nuclear, since by the theorem of Peter and Weyl it is 
of countable dimension. Moreover, the dual R(G)’ is a Frechet nuclear locally m-convex 
algebra. 

2.4. Universal enveloping algebras 

Starting with a finite-dimensional Lie algebra g over K the universal enveloping algebra 
Ug is a Hopf algebra over K. Then the topology of finite dimensional representations on 
24s is Hausdorff, and the completion i!?g of Ug is a nuclear Hopf algebra. Moreover, Gg is 
locally m-convex. 

For a Lie group G with Lie algebra g there is a natural map i relating Z.?g and the nuclear 
Hopf algebra R(G)‘. The map i : Ug + R(G)’ is defined by i(X)(f) = Lx f (e), f E 
R(G), where Lx is the left invariant differential operator on G given by X E Ug, and e is the 
unit of G. Now i can be extended to a continuous R-linear map i : Z?g -+ R(G)’ which is a 
morphism of nuclear Hopf algebras. In general i is not injective, but for connected and sim- 
ply connected Lie groups G it is. Moreover, in that case i is an open map onto its image i (Gg), 
since the finite-dimensional complex representations of g and G are in one-to-one corre- 
spondence. Therefore, fig can be considered as a closed nuclear sub-Hopf algebra of R(G)‘. 

2.5. Simple Lie algebras 

If g is a simple Lie algebra over C then finitely many of the finite-dimensional repre- 
sentations already generate all finite-dimensional representations of g (via finite sums and 
tensor products; e.g. for g = sI(N, C) the finite-dimensional representations are generated 
by the fundamental representation %(N, C) c gI(N, C)). As a consequence, the topology 
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of finite-dimensional representations on the universal enveloping algebra Ug is me&able, 
hence the completion Gg is Frechet. Therefore fig is strictly nuclear. 

For a simple complex Lie algebra g with corresponding connected and simply connected 
Lie group G the image i(Ug) under the map i : 6g + R(G)’ is dense in R(G)‘. Hence, 
by the above, the map i : i$g -+ R(G)’ is an isomorphism of FrCchet algebras. Thus 
we have a natural complete duality between .6g and R(G)‘. In particular, c$t(N. C) g 
R(SL(N, a=)‘. 

In the case of a compact Lie group G the map i : Ug + R(G)’ is injective as well. It 
can be continued to a C-linear injective map i : l/g@ -+ R(G)’ by complexification of the 
Lie algebra g. The image i(l!gC) turns out to be dense in R(G)‘. However, the induced 
topology on i(LlgC) c R(G)’ does in general not coincide with the topology coming 
from the projective topology of finite-dimensional representations; see e.g. the example 
of U (1). Instead of this, the inclusion i induces a new lc topology on Ug@ which can be 
described as the lc projective limit of all representations @ which are derivatives of finite- 
dimensional continuous representations (p of the group G. This topology depends on the 
group in question and not only on the Lie algebra g. It is always metrizable and nuclear. 
Hence, the completion - which we denote by fieC - is a Frechet nuclear Hopf algebra 
naturally isomorphic to R(G)‘. 

As the completion Gg of 2Ag with respect to the topology of nuclear Frechet represen- 
tations naturally lies in fig we have a continuous inclusion Gg -+ R(G)’ as well. Note 
that i?g, Q;/g, ugC and R(G)’ are locally m-convex algebras as projective limits of locally 
m-convex algebras. 

3. Holomorphic deformation of locally convex algebras 

In our approach to deformation theory we replace the ring C[[T]] used in the formal 
deformation theory of algebras (cf. [ 1,5]) by the nuclear Frechet algebra o(Q) of holomor- 
phic functions on an open complex domain Sz c @” . For a complete lc Hausdorff space E, 

let ED = O(C2, E) be the space of holomorphic E-valued functions f : 52 + E equipped 
with the compact open topology. Every E can locally be represented by a convergent power 

series f(z) = CaeN,1 faz*, z E C2, where fol E E. Now EQ is a complete lc Hausdorff 
space which is isomorphic to the completion of the tensor product c?(O) 69 E with respect 
to the Jr-topology (cf. [7]): 

En = c?(sZ, E) Z O(L?)6E. (5) 

Hence, EQ is nuclear (resp. Frechet) if E is nuclear (resp. Frechet). The pointwise mul- 
tiplication O(Q) x En + EQ, (h, f) t+ kf, is continuous and thus defines on En 

the structure of a topological O(L?)-module. Because of Eq. (5) we sometimes call EQ a 
topologicallyfree O(S2)-module. If E and F are topological C?(Q)-modules, we denote by 
E&oc~) F the completion of E 630,~) F by the n-topology. 

In deformation theory one is interested in algebra structures on EQ Let us describe this in 
more detail. Define a topological O(fJ)-algebra structure on En to be an algebra structure 
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on EQ = O(&?, E) given by a continuous O(L?)-bilinear map b : EQ x EQ --f En 
fulfilling the associativity constraint and a continuous Q(D)-linear unit ij : O(Q) + EQ. 
We often denote this algebra (EQ, ji, ij) by J!?. ;i is determined by ((1) E En. 

Two such algebra structures (b, 6) and (fi, 6) on En are called equivalent if there exists 
an O(D)-linear isomorphism ~0 : EQ + En (of lc spaces) such that the relations ~0 o fi = 
ji o (v x ~0) and (p o Cj = rj are fulfilled. 

The multiplication ,C of an C?(G)-algebra (EQ , /Ii, ;i) can be described as a holomorphic 
map 6 : f2 + L(E&E, E), where L(E, F) is the space of continuous linear maps from E 
to F equipped with the topology of uniform convergence on the bounded sets of E. Thus 
around any zu E D the product map b can locally be expanded in the form 

/1(z) = 2 cLc?(z - ZOY, (6) 
(YEN” 

where z E $2 is close enough to zu and the pti are continuous bilinear mappings on E 
with values in E and which depend on the base point zo. Similarly tj : C -+ En with 
G(h) = Cj(l) can be viewed as the map rj(1) : 52 += E. In case E = A is an lc algebra 
the constant algebraic structure on An is given by ,ii(z) = p and {(h)(z) = n(k), A. E C, 
z E n. 

Definition 3.1. Let Q c C be an open complex domain, * a distinguished point and m, c 
0(D) the maximal ideal of holomotphic vanishing at *. A (topoZogicallyfree) holomorphic 
deformation of a lc algebra (A, p, r]) over G’ at * is a topological O(Q)-algebra structure 
(fi, 6) on An such that the quotient O(S2)-module An/m,An is isomorphic to A as a 
lc algebra. Equivalently ~0 = /1 in expansion (6) and e(l)(*) = n(l). The deformation 
is called trivul if (AQ, 6, ;i) is equivalent to the constant algebra structure on AQ. The 
distinguished point * is called the base point of the deformation. 

An important advantage of holomorphic deformations in comparison to formal defor- 
mations lies in the fact that for every parameter z E C2 one receives a concrete deformed 
algebra structure on the underlying linear space of the original algebra A: Simply take - for 
any value z E G’ - b(z) E L(A@A, A) as the deformed multiplication and ij(z) E L(@, A) 
as the deformed unit. Then a *i b = G(z) (a, b) E A is the new product of a E A and b E A, 
and e, = ij(z)( 1) E A is the new unit. Both, the new product and the new unit are contained 
in the original space A and not only in a nontrivial extension of A. 

In case the lc algebra A is commutative and carries a Poisson bracket { , } one is 
interested in the quantization of A or in other words deformations of A in direction of the 
Poisson bracket. More precisely under a (topologicallyfree) holomolphic quantization of 
A over the domain L? c C we understand a topologically free holomorphic deformation 
(An, ,G, 6) of A at base point 0 E D such that the relation 

b(f, g) - b(g, f) = -iz{f, gl + o(z*) (7) 

holdsforall f,g E Aandz E Q. 
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Example 3.2. 
(i) Quantum vector spaces (cf. [4,8]). Let 52 = @* be the set of all nonzero complex 

numbers and consider the n-dimensional complex vector space V = C’* with the 
canonical basis (xl, . . . , x,). Then construct the tensor algebra TV of V or in other 
words the free C-algebra in n generators. By completion with respect to the projective 
limit topology of all Frechet representations TV becomes a nuclear locally m-convex 
Frechet algebra ?V. The functions 

fiK : fl -+ TV, z H x,x, - zx,xI 1 5 i < K 5 n (8) 

then generate a unique closed ideal I in the nuclear algebra O(L2)@V. The quotient 
c?(CG) = C?(s2)&kV/Z is called the algebra of entire functions on the quantum n- 
vector space. It comprises a holomorphic deformation of the algebra C3(Cn) of entire 
functions on C”: The homomorphism O(@~) -+ C3(@“)definedby[f@xx,] I-+ f(l)x, 
is well-defined, surjective and has kernel mrO(Ci). Therefore O(C~)/mtO(@~) g 
O(@Y) holds. Because of relations (8) the O(C*)-linear combinations of the family 

(XY’ 3 . . .Y G3m ,,..., rn,EF!& are dense in C?(Ci). Since (xy’, . . . , x~“), ,,.__, m,E~ fur- 
thermore is free over O(C*), O(CG) is isomorphic to O(C*)@O(C”) 2 O(@* x C”) 
as a nuclear space. This proves the claim. 

Alternatively one could give TV the inductive topology of all finite-dimensional sub- 
spaces. Then TV is already a strictly nuclear algebra. By the same procedure as above 
but now applied to TV one is lead to the algebra P(Ca) ofpolynomialfunctions on the 
quantum n-vector space. P(@G) comprises a deformation of the algebra C[XI , . . . , x,] 
of polynomials in n complex variables. 

(ii) Quantum exterior algebra (cf. [8,12]). In the spirit of the preceeding examples it is also 
possible to deform the exterior algebra on Cl. Let V’ be the dual of V, (,$I, . . , t,,) the 
dual basis of (XI, . . . , x,) and let TV’ be given the finest lc topology. Then consider 
the closed ideal J c O(C*)6TV’ generated by the relations 

The corresponding quotient A(@;) = TV’/ J is the exterior algebra of the quantum 
n-vector space. Exactly like above it is shown that A(Ci) is a holomorphic deforma- 
tion over C* of the exterior algebra A(C”). Note that unlike O(Ci) and P(Ct) the 
algebra A(C) is finite-dimensional. The tensor product algebra O(@G) @ A(F) can 
be interpreted as the algebra of entire holomorphic quantum differential forms on @t, 
the tensor product P(C;) ~3 A(C) as the algebra of algebraic quantum difSerentia1 
forms on @“y . 

4. Holomorphic deformation of nuclear Hopf algebras 

The concept of a (topologically free) holomorphic deformation can easily be transferred 
to the case of deformations of nuclear coalgebra structures, bialgebra and Hopf algebra 
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structures, as well as Lie bialgebra structures. In particular a (topologicallyfiee) holomor- 
phic deformation of a nuclear Hopf algebra H with structure maps p, A, Q , F and S is given 
by the following data: 

with fi(*) = /A, 

d E CW’, C(H,H&W) =o~a,(H~,H&o(n~Hn) 
with d”(s) = A, 

ii E O(sZ, CW, H)) g Co(n)(O(Q), HQ) with ii(*) = rl, 

2 E O(C?, C(H, 42)) E f&n)(H~, O(Q)) with E”(*) = E, 

,? E C?(n, QH, H)) E C~(Q)(HQ, Ho) with s(*) = S, 

(10) 

such that (Ha, CL, A, ;i, El, 3) is a nuclear Hopf algebra. F.vo such Hopf algebra deforma- 
tions are equivalent if the corresponding Hopf algebra structures on HQ are isomorphic. 
Any holomorphic deformation of a nuclear Hopf algebra turns out to be equivalent to a 
holomorphic deformation with constant unit and counit, i.e. with G(Z) = n and Z(z) = E 
forallz E 52. 

Our first result concerns the dual of the holomorphic deformation fi of a strictly nuclear 
Hopf algebra H: Transposing all the structure maps one gets a holomorphic deformation 
of the dual nuclear Hopf algebra H’. The underlying topological 0(Q)-module is Ho’ = 
&t(a,(H~, O(D)) with the topology of uniform convergence on bounded (or equiva- 
lently compact) sets of HQ E O(Q)6H. This space is isomorphic as an O(Q)-module to 
0(Q)6 H’ &Z O(sZ, H’) = HA. The structure maps on H;2 are given by pullbacks of the 
structure maps on HQ : 

if+*, fi’= A*, s’= j*, 6’ = <*, E”’ = fi*. (11) 

Note that (HQ&HQ)’ 2 HA &HA 2 O(Q, H’&H’), hence a’ is well-defined indeed. 
The following duality theorem now is obvious. 

Theorem 4.1. Let fi = (Ho, CL, 2, E”, ij, 3) be a holomorphic deformation of the strictly 
nuclear Hopf algebra (H, p, A, E, q, S). Then H’ = (Hh, b’, A’, ij’, El’, 3’) is a holomor- 
phic deformation of the nuclear Hopf algebra H’. Moreover I? and I? are equivalent ifand 
only if I?’ and B’ are equivalent. In addition, the bidual (Z?)’ is canonically isomorphic 
to I?. 

The above theorem is a direct generalization of the corresponding result for the formal 
case (cf. [ 11). Similarly, the next fact about the construction of a twisting matrix carries over 
directly to the holomotphic case (cf. 11, Proposition 4.2.41). 

Theorem 4.2. Let G be a compact group and let H denote the strictly nuclear Hopf algebra 
R(G)’ g ogC. Let (HQ, 6) be a holomorphic deformation of the nuclear bialgebra H 
leaving invariant the algebra product on H. Then there exists F E (H&H)Q such that 
63 = .?=A. 
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ProojY Because of a” E C~(Q)(HQ, HQ @O(Q) HQ) GIG CJ(&?, L(H, H&H)) we get 
a “twisting matrix” 3 E O(L?, H&H) Z (H&H)a by the integral 9 = lG d(g) 
(A(g))-’ dp(g), where w is the Haar measure on G and g E G stands for 6,, the Dirac 
distribution with support in g. By left- and right-invariance of the Haar measure 

3A(h) = &hg)(A(hg))-’ A(h) dp(hg) = d(h)E (12) 

G 

Hence the claim follows from the fact that the Dirac distributions 6, lie densely in ‘R(G)‘. 
0 

Remark 4.3. We expect in all important examples 3(z) to be invertible at least in a neigh- 
borhood of the base point. In that case we get a dual version of Theorem 4.2 which leads to 
a holomorphic coquasitriangular Hopf algebra deformation of R(G) . 

Theorem 4.4. Let (H, p, n, A, e, S) be a cocommutative nuclear Hopf algebra and let 
3: R -+ H@H be a continuous map on an open domain 52 c @ fulfilling the ax- 
ioms of a twisting map (cf [2]). Then 3 induces a new nuclear Hopf algebra struc- 
ture (HQ, pF, I]~‘, A3, Ed, S3) on Ha = C?(~)~H by defining ,u3 = p, nF = n, 
A3(z @ h) = T(z)A(h) 3-‘(z), e3 = E and SF(z @ h) = v(z)S(h)u-‘(z) with z E 
o(n), h E Hand u = ,LL(~ @S)3. (HQ, p, n, A3, E, S3) is topologically triangularwith 
universal R-matrix R = 3213~‘ . 

Now assume H to be topologically quasitriangular with universal R-matrix Ii! and, 
additionally to the above, that 3 fulfills the quantum Yang-Baxter equation and 32 1 = 
3-l. Then (HQ, p, n, A3, E, S3) is a topologically quasitriangular nuclear Hopf algebra 
with universal R-matrix ‘RF = 3’-‘R3’-‘. 

If the twisting matrix 3’fulfills 3(*) = 1 @ 1 for a point * E Q, then in both of the above 

cases (Hn, CL, 11, AT, E, SF) comprises a topologically free holomorphic deformation over 
R of the Hopf algebra H with base point *. 

Proof The proof of the theorem can be taken almost literally from the corresponding one 
in the formal case. Confer for example [2]. ??

In the following considerations we will show how one can construct under certain con- 
ditions a holomorphic deformation of an algebra (resp. bialgebra or Hopf algebra) out of a 
formal one. 

So let A be a finitely generated C-algebra and assume that there exists a formal defor- 
mation At, Z (A[[A]], p, r]) of A. In other words p is a C[ [tt]]-bilinear multiplication map 
on A[[A]] and n a unit such that A[[h]]/AA[[A]] E A. We now choose a finite-dimensional 
vector space V and a surjective homomorphism TV = BnEN V@‘” -+ A. According to (2) 
this gives rise to a topological presentation ?V + A, where i and ?V are the comple- 
tions of A resp. TV with respect to the topology of all finite-dimensional representations 
(resp. all nuclear Frechet representations). Using the universal property of the tensor al- 
gebra TV there exists a unique morphism of C[[fi]]-algebras 75 : TV[[h]] --+ Ah such that 
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TV + TV[[A]] -+ At, + A is the presentation TV + A. Let I be the kernel of rc and i 
its completion in ?V[[A]] = @[[A]]6?V. Denoting the nuclear algebra ?V[[h]]/f by &, 
we then have a commutative diagram 

with injective horizontal and surjective vertical arrows. Only the injectivity of i is not 
immediately clear. It follows from the fact that I is closed in TV[[A]]: every image of I 
under a projection of TV[[?z]] to a finite-dimensional vector space is closed. Note that the 
morphisms in the above diagram are also filtered with respect to the filtrations induced by 
the maximal ideals generated by 8. By these considerations we now have ,&/A& g 6. 
Further the vector space A[[h]] 2 Ah lies densely in Ah, hence & E A[[h]] and the 
algebra & comprises a formal deformation of 6. 

In the next step assume C? to be a connected open domain in C containing the origin. 
This gives us a continuous and injective map p : ~VQ = O(sZ)&@V -+ ‘k[[h]] by 
power series expansion around the origin. We now say that the formal deformation At, 
has holomorphic initial data if there exists a system of generators Y of I such that Y E 
im(p). Assuming this is the case indeed let Y be the preimage of Y under p. Let IQ be 
the closed ideal in ?VQ generated by Y. We then have In = p-‘(i), which induces an 
injective and filtered homomorphism j := C?(L’)@V/ZQ -+ ?V[[h]]/f &G A[[h]]. This 
map is surjective from m”A/m”+’ A to A’i[[A]]/A “+‘i[[A]] where m is the maximal 
ideal in O(Q) of functions vanishing at the origin. Thus A/r& g A. As furthermore 
A is dense in i[[A]] we finally have i 2 6~ as a nuclear space. Thus i is a topolo- 
gically free holomorphic deformation of 6~. We subsume these results in the following 
proposition. 

Proposition 4.5. Let A be aJinitely generated complex algebra (resp. bialgebra or Hopf 
algebra) and let A be the completion of A with respect to the topology offinite-dimensional 
representations (resp. nuclear Frechet representations). Then every formal deformation Ah 
of A induces a formal deformation Ah of A together with a canonical filtered embedding 
Ah + Ah. Zf the deformation At, has holomorphic initial data over some open connected 
domain Sz c @ containing the origin, then there exist a topologically free holomorphic 
deformation A of A over Q and a canonical filtered embedding AQ -+ &. These con- 
structions are unique up to isomorphy. 

Remark 4.6. Suppose HA to be a formal deformation of a finitely generated Hopf algebra 
H with holomorphic initial data. Give Ht, the projective limit topology with respect to all 
projections Ht, + Hh/h” Ht, 2 Hm c km. Assume further that Hh is topologically 
(quasi-) triangular with universal R-matrix K!h E Ha&H*. The universal R-matrix on Hh 
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can be pushed down to one on fin or in other words induces on I& the structure of 
a topologically (quasi-) triangular Hopf algebra, if and only if the formal power series 
expansion of Rh with respect to A in tj&fi is converging over Sz. 

Finally let us show by giving an example that the theory of quantum groups can be 
understood as the theory of holomorphic deformations. 

Quantized ZAGI(N + 1, C). Consider the Lie algebra 5l(N + 1, C). Using its standard 
basis X:, X,, H, with 1 I 1 5 N one checks immediately that the relations defining 
quantized U+%I(N + 1, C) are holomorphic in the sense of Proposition 4.5. Hence, we A 
receive a holomorphic deformation Gq~I( N + 1, C) of Z4;1( N + 1, C) over the domain 
fi = {z E C:Z # kni, k E Z*). Using the Drinfeld double (cf. [3]) one can construct 
a (topological) R-matrix Rh on formally quantized Z& (N + 1, @) such that ‘I& has an 
expansion of the form 

(13) 

where to E I;[( N + 1, Q 63 GI(N + 1, Q is chosen appropriate, Hp = CL BL HL and 
the Pb are polynomials homogeneous of degree B1 in X: 8 1 and 1 @J XL. Hence Rh 
has a converging power series expansion, so Remark 4.6 entails that &Gt(N + 1, 0 is 
topologically quasitriangular as well. 

Quantizing SL(N, C) according to FRT. First let us briefly recall the Faddeev- 
Reshetikhin-Takhtajan-construction of quantized R(SL(N, C)) (cf. [4]). Let V be the com- 
plexvectorspacespannedbyxi,i=l,...,N,C=End(V)’andtj,i,j=l,...,Nthe 
basis of C induced by the xi. Then consider the following R-matrix 

zH z~t:@t~+~tj@t;+(z-z-y&@tj (14) 

i=l r.j=l I j=l 

IfJ “i 

which by the FRT-construction gives rise to the quotient algebra A(R) = TC/ J. Hereby 
TC is the tensor algebra of C together with the finest lc topology, and J the closed ideal 
in TC generated by the RTT-relations (cf. [4]). Now it is well-known that the quantum 
determinant det,T = CcESN (-z)ecn)tpc” . . . . . ticN) belongs to the center of A(R). 
Denoting by I the ideal I = A(R)(det,T - 1) the quotient bialgebra A(R)/Z then is even 
a Hopf algebra. We call it the algebra of matrix coejicients on quantized SL(N. C) and 
denote it by R(SL, (N, C)). Furthermore denote for every z E C* by R(SL; (N, 0) the 
Hopf algebra R(SL,(N, C))/nrZR(SL,(N, C)), where m, is the maximal ideal of O(C*) 
at z. Likewise define Z&GI(N, C) for z E G’ = {z E @ : z # kni, k E Z*}. 

Then the following result is an immediate consequence of Proposition 4.5 and the corre- 
sponding result in the formal case (cf. [2,7.1]). 

Theorem4.7. The FRT-algebra R(SL,(N, C)) = A(R)/(de$ - l)A(R) correspond- 
ing to the R-matrix (14) comprises a holomorphic quantization of the Poisson algebru 
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R(SL(N, C)) of matrix coeficients on the Lie group SL(N, C). Moreovel; it coincides 
with the deformation U,Gl(N, C)’ dual to the quantization of UsI(N, C). For every z E 52 
the Hopf algebra R(SL,: (N, 62)) is topologically isomorphic to the restricted Hopf dual 
&Zsl(N, C)‘, and&GI(N, C) to R(SL,:(N, C))‘. 
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